p-Version FEM for structural acoustics with a posteriori error estimation

نویسندگان

  • S. Dey
  • D. K. Datta
  • J. J. Shirron
  • M. S. Shephard
چکیده

We demonstrate the advantages of using p-version finite element approximations for structural-acoustics problems in the mid-to-high frequency regime. We then present a sub-domain-based a posteriori error estimation procedure to quantify the errors in the setting of a 3D interior-acoustics problem with resonances, and give numerical results. Effectivity indices show robust behavior of the error estimator away from the resonant frequencies. 2005 Published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress on A-posteriori Error Analysis for the p and h-p Finite Element Methods

This paper investigates recent progress on a-posteriori error analysis for the high-order finite element method(FEM). The paper will discuss the differences between a-posteriori error estimations for lower-order FEM and those for high-order FEM, and analyzes the technical and methodological differences on a-posteriori error estimations for high-order FEM in one dimension and in high dimensions....

متن کامل

The Posteriori Error Estimations for p - Version Finite Element Methods in Square ⋆

This paper considers the model problem in two-dimensional domain. The a posteriori error indicator for p-version Finite Element Methods (FEM) is discussed, and the reliable property of this a posteriori error indicator is investigated. Specially, we reformulate the a posteriori error indicator by orthogonal polynomials, which is easily used in practical applications.

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Weighted L-norm a Posteriori Error Estimation of Fem in Polygons

In this paper, we generalize well-known results for the L2-norm a posteriori error estimation of finite element methods applied to linear elliptic problems in convex polygonal domains to the case where the polygons are nonconvex. An important factor in our analysis is the investigation of a suitable dual problem whose solution, due to the non-convexity of the domain, may exhibit corner singular...

متن کامل

L2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces

Surface Finite Element Methods (SFEM) are widely used to solve surface partial differential equations arising in applications including crystal growth, fluid mechanics and computer graphics. A posteriori error estimators are computable measures of the error and are used to implement adaptive mesh refinement. Previous studies of a posteriori error estimation in SFEM have mainly focused on boundi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006